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p-Hydroxy-a-amino acids are ubiquitous, important components Table 1. Catalytic Enantio- and Diastereo Selective Aldol
of various nitrogen-containing biologically active compounds and Reactions of Silicon Enolate 2 with Benzaldehyde (1a (R = Ph))

natural products. For example, the vancomycin class of antiblotics o O o™ oH @ /?ii
incorporates arythro- and athreo-arylserine moiety, and the RJ\H *2 ——— R OMe * R” ™" “OMe
promising antifungal agents, sphingofungtntain g3-hydroxy- 1 :nrtﬁoca ginA;OCFS
a-amino acid in the polar headgroup of their structure. In addition,
pB-hydroxy-a-amino carbonyl compounds are often used as inter- BINOL ProH time  yield ee
mediates for synthesis of 2-amino-1,3-digldactams? aziridines? enty  deivatve  (mol%)  (M° (%)  antiyn (%) (anti)
and so on. Among a number of methods reported to date for the 1° 3a 80 0 71 43157 46
asymmetric synthesis of-hydroxy-a-amino acids, the aldol z 3a 80 0 80 2971 63

. . L ) . 3ef 3a 80 0 18 17/83 93
reaction of glycine derlv.atlves W!th aldehydes has been considered 2a 150 0 50 55/45 75
to be the most synthetically efficient appro@chowever, there 5 3b 150 0 74 58/42 32
have been few successful examples demonstrating a catalytic 6 3b 150 1 97 72128 71
asymmetric process: several groups reported Lewis acid-catalyzed 7 3b 150 4 92 75/25 7
asymmetric synthesis of 2-oxazoline-4-carboxylates as surrogates g gg égg g gg ;gﬁg 8;

of 5-hydroxy-a-amino acid$,while recently more direct approaches
to S-hydroxy-o-amino carbonyl compounds have been developed “@Unless noted otherwise, the reaction was carried out with 1.5 equiv of
using glycine Schiff base derivativsAlthough each of these ~ 2in to.'“e”&‘BL;OMe (1:1) a(tj*f20°C ;%S h(Tothe plreo/S)entée; %f”?l gﬂlral

i : i irconium catalyst prepare rom 4 mol "), -
a_lppror_:lches involves an elegant methqubgy’ there SFI" remaln SOmeéerivative3 (12 mol %), PrOH, and kD (10 mol %).P Addition time of
limitations such as substrate generality, and very little is known sijlicon enolate¢ In toluene at GC. 9 Ee of syn isomere At 0 °C. ' Silicon
concerning actual applications to efficient synthesis of biologically enolate5 was used, and the major product was6.
important compounds. Herein we describe a new synthetic protocol

Y. X OSiMe, OH ©
based on catalytic enantio- and diastereoselective aldol reactions OO on PO NP ome P~ Aove
OH

tri Al . L. . MesSiO 2 oSiMe, " N__CF,
of _N tnfluoroace_tylglycme derived silicon enolate with aldehydes OO oy (0B G FiC Ne\%w o I
using a chiral zirconium catalyst. v X X=Y = (R}-3,36,6-1,BINOL (3b) Wof . e syn6

We have previously shown that chiral zirconium complexes
prepared from zirconium alkoxide and BINOL derivatives activate preparation, and cosolvents used during addition of silicon enolates
both azomethine compounds and aldehydes effectively, and variouswere next examined. WhéBuOMe was used (final solvent ratio:
catalytic asymmetric reactions such as Mannich-type reactions, toluenelBuOMe = 1/1), the yield was increased to 80% and the
Mukaiyama aldol reaction®,hetero Diels-Alder reactions$® etc. selectivity was also improved; syn selectivity was raised to anti/
have been performed. In our initial investigations, we conducted syn= 29/71, and the enantiomeric excess of the syn adduct was
aldol reactions of benzaldehyde with several types of glycine- 63% ee (entry 2). Instead @& we also tested silicon enolat®
derived silicon enolates under the conditions of toluenéCO0 derived from N-methylN-trifluoroacethylglycine methyl ester.
in the presence of a chiral zirconium catalyst prepared from Although the reactivity o5 was much lower than that &, the
Zr(O'Bu), (10 mol %), R)-3,3-1:BINOL (3a, 12 mol %),"PrOH diastereo- and enantioselectivity were remarkably increased to anti/
(80 mol %), and HO (20 mol %), which are the optimal conditions  syn= 17/83, syn= 93% ee (entry 3). To improve the yield and
for aldol reactions of propionate-derived silicon enol&teas a selectivity, we investigated the reaction conditions further and
result, the reaction of silicon enolat2’ prepared fromN- obtained very surprising results concerning the diastereoselectivity.
trifluoroacetylglycine methyl ester proceeded to give the desired Thus, when the amount 8PrOH was increased to trap the cationic
pB-hydroxy-a-amino acid derivativela (R = Ph) in good yield silicon species more efficiently, the diastereoselectivity was reversed

(71%) but with disappointing selectivity (anti/syn43/57, anti= (toluene-'BuOMe, —20 °C, anti/syn= 55/45, entry 4). With the
6% ee, syn—= 46% ee, Table 1, entry 1). We also tested other use of R)-3,3,6,6-1,BINOL bearing electron-withdrawing iodo
trimethylsilyl enol ether derivatives aért-butyl N-(diphenylmeth- groups at the 6,6positions, a slight increase of the yield and anti

ylene)-glycinaté or 2-oxazolin-5-one$? however, they resulted  selectivity was obtained, although enantioselectivity was decreased
in no reaction or very low yield with almost no selectivity. Silicon under these reaction conditions (entry 5). Moreover, when silicon
enolate? is particularly useful because it can be easily prepared in enolate2 was slowly added ovel h to thereaction solution of the
large scale from glycine methyl ester and stored over a long period. catalyst and aldehyde, the result was dramatically improved favoring
Moreover, the trifluoroacetyl group of the corresponding product the anti-isomer (97%, anti/sys 72/28, anti= 71% ee, entry 6).

is utilized as a useful protecting group for further transformations. The slow addition method was found to be particularly effective
As for reaction solvents, toluene was the best for the catalyst in this reaction. Extension of the addition time resulted in marked
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Table 2. Catalytic Enantio- and Diastereoselective Aldol
Reactions of Silicon Enolate 2 with Various Aldehydes?

entry R yield (%) anti/syn ee (%)°
1 Ph (La) 92 90/10 95
2 4-MeGHa4 (1b) 87 85/15 94
3 4-ClIGsH4 (10) 91 84/16 94
4 3-MeGH. (1d) 83 91/9 93
5 3-CIGH4 (1€ 93 92/8 96
6 3-MeOGH. (1f) 93 91/9 95
7 3,5-(MeO}CeHsz (10) 93 87/13 97
8° 2-Naphthyl (Lh) 93 94/6 95
9 2-Furyl (Li) 71 87/13 90

10 Ph(CH)sC=C (1)) 81 78122 85

11 TBDPSOCHC=C (1k) 85 80/20 95

a Reaction was performed according to the conditions of Table 1, entry
9.9 Ee of the anti isomert Amount of O was 20 mol %, and 2.0 equiv
of 2 was added over 10 h.

Scheme 1. Efficient Asymmetric Synthesis of
L-erythro-Sphingosine?

o OH O .
a i , C
TBDPSOMH + 2 —— TBDPSO_~ oMe ——~
7 NHCOCF;
8: 95%, anti/syn = 80/20
PMP 97% ee
PMP
o o OH
R e o” O f, g Z
RO A P C|3H27W OH
NHCOCF,  CiaHer NH,
NHCOCF,
9: R =TBDPS 3 L-erythro-sphingosine
d E 10:R=Ac n ihro-sphing

aConditions: (a) Chiral zirconium catalyst (10 mol %), toluene
BuOMe, —20 °C. (b) NaBH,, MeOH, rt (87%). (c) (i) PMPCH(OMe)
TsOH, DMF, rt (71%); (ii) isolation otransisomer. (d) (i) TBAF, THF,
rt; (ii) Ac20, DMAP, pyridine, 0°C (90%, two steps); (iii) recrystallization
(72%, >99% ee). (€) GH2sMgBr, LizCuCl, THF, —15°C (57%). (f) 2 N
NaOH-EtOH, 80°C (99%) 1 N HCI-THF, 40°C (75%).
improvement of both yield and selectivity (entries 7 and 8). Finally,
when 300 mol % ofPrOH was used and was added over 8 h,
the reaction proceeded smoothly in high yield and high anti
selectivity with excellent enantioselectivity (92%, anti/syn90/
10, anti= 95% ee, entry 9)!

We then examined reactions of other aldehydes under the optimal
conditions, in which silicon enolat2 (1.5-2.0 equiv) was slowly
added over 810 h (toluene-'BuOMe, —20 °C), and the results

are summarized in Table 2. In most cases, the reactions proceeded ®

smoothly to provide the desirgidhydroxy-o-amino acid derivatives

in high yields with good anti selectivity and excellent enantiose-
lectivity. Various types of benzaldehyde derivatives containing
electron-withdrawing or -donating substituents at the para or meta
positions were found to be good substrates. Furfural also afforded
the corresponding product in good yield with high stereoselection
(entry 9). The reaction of propargyl aldehydes cleanly produced
anti-#-hydroxy-o-amino acid derivatives in good yield with good
enantio- and diastereoselectivity (entries 10 and 11), which can be
converted to various compountfs.

Finally, to demonstrate the synthetic utility of this aldol reactions,
we performed efficient asymmetric synthesisLeérythro-sphin-
gosinet® Sphingosine is the backbone of an essential cell membrane
component, sphingolipid, and has been widely studied from both
biological and chemical points of vielf.As shown in Scheme 1,
the aldol reaction o2 with aldehyde7 was conducted in the
presence of the chiral zirconium catalyst affording the desirgd
aldol adducs in high yield (95%) with high stereoselectivity (anti/
syn= 80/20, anti= 97% ee). Reduction & with NaBH,, followed
by protection of the resulting 1,3-diol as ftamethoxybenzylidene
acetal and isolation of the trans isomer providedThe tbutyl-
diphenylsilyl ether was converted to the corresponding acétate

which was recrystallized to an optically pure form99% ee) and
treated with G,H,sMgBr in the presence of a catalytic amount of
Li,CuCl, to afford 11. Finally, deprotection of 2-amino-1,3-diol
gaveL-erythro-sphingosine. Compourgiis highly functionalized
and considered to be a potentially useful intermediate for more
complex compounds containing /&hydroxy-c-amino carbonyl
moiety.

In summary, we have developed an efficient process for the
asymmetric synthesis @nti-5-hydroxy-a-amino acid derivatives
based on highly enantio- and diastereoselective aldol reactions of
a glycine-derived silicon enolate with aldehydes using a chiral
zirconium catalyst. This is the first example of enantioselective aldol
reactions using silicon enolates prepared friAtrifluoroacetyl-
glycinate. The resultingN-trifluoroacetyl group is easily cleaved
under either acidic or basic conditions and can be used directly as
a protecting group for further transformations. Further improvement
of the efficiency and the generality of the process, as well as
exploration of the interesting features of silicon dienolateare
now under investigation.
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